On Maximality of Compact Topologies

نویسنده

  • Martin Kovár
چکیده

Using some advanced properties of the de Groot dual and some generalization of the Hofmann-Mislove theorem, we solve in the positive the question of D. E. Cameron: Is every compact topology contained in some maximal compact topology? Date: 29. 8. 2004. Last revision: 14. 10. 2004

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On certain maximality principles

‎We present streamlined proofs of certain maximality principles studied by Hamkins‎ ‎and Woodin‎. ‎Moreover‎, ‎we formulate an intermediate maximality principle‎, ‎which is‎ ‎shown here to be equiconsistent with the existence of a weakly compact cardinal $kappa$ such that $V_{kappa}prec V$‎.

متن کامل

Homomorphisms on Topological Groups from the Perspective of Bourbaki-boundedness

In this note we study some topological properties of bounded sets and Bourbaki-bounded sets. Also we introduce two types of Bourbaki-bounded homomorphisms on topological groups  including, n$-$Bourbaki-bounded homomorphisms and$hspace{1mm}$ B$-$Bourbaki-bounded homomorphisms. We compare them to each other and with the class of continuous homomorphisms. So, two topologies are presented on them a...

متن کامل

The Necessary Maximality Principle for c. c. c. forcing is equiconsistent with a weakly compact cardinal

The Necessary Maximality Principle for c.c.c. forcing with real parameters is equiconsistent with the existence of a weakly compact cardinal. The Necessary Maximality Principle for c.c.c. forcing, denoted 2mpccc(R), asserts that any statement about a real in a c.c.c. extension that could become true in a further c.c.c. extension and remain true in all subsequent c.c.c. extensions, is already tr...

متن کامل

The Necessary Maximality Principle for c . c . c . forcing is equiconsistent with a weakly compact cardinal Joel

The Necessary Maximality Principle for c.c.c. forcing with real parameters is equiconsistent with the existence of a weakly compact cardinal. The Necessary Maximality Principle for c.c.c. forcing, denoted 2mpccc(R), asserts that any statement about a real in a c.c.c. extension that could become true in a further c.c.c. extension and remain true in all subsequent c.c.c. extensions, is already tr...

متن کامل

On the Maximal Extensions of Monotone Operators and Criteria for Maximality

Within a nonzero, real Banach space we study the problem of characterising a maximal extension of a monotone operator in terms of minimality properties of representative functions that are bounded by the Penot and Fitzpatrick functions. We single out a property of this space of representative functions that enable a very compact treatment of maximality and pre-maximality issues. This Paper is D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005