On Maximality of Compact Topologies
نویسنده
چکیده
Using some advanced properties of the de Groot dual and some generalization of the Hofmann-Mislove theorem, we solve in the positive the question of D. E. Cameron: Is every compact topology contained in some maximal compact topology? Date: 29. 8. 2004. Last revision: 14. 10. 2004
منابع مشابه
On certain maximality principles
We present streamlined proofs of certain maximality principles studied by Hamkins and Woodin. Moreover, we formulate an intermediate maximality principle, which is shown here to be equiconsistent with the existence of a weakly compact cardinal $kappa$ such that $V_{kappa}prec V$.
متن کاملHomomorphisms on Topological Groups from the Perspective of Bourbaki-boundedness
In this note we study some topological properties of bounded sets and Bourbaki-bounded sets. Also we introduce two types of Bourbaki-bounded homomorphisms on topological groups including, n$-$Bourbaki-bounded homomorphisms and$hspace{1mm}$ B$-$Bourbaki-bounded homomorphisms. We compare them to each other and with the class of continuous homomorphisms. So, two topologies are presented on them a...
متن کاملThe Necessary Maximality Principle for c. c. c. forcing is equiconsistent with a weakly compact cardinal
The Necessary Maximality Principle for c.c.c. forcing with real parameters is equiconsistent with the existence of a weakly compact cardinal. The Necessary Maximality Principle for c.c.c. forcing, denoted 2mpccc(R), asserts that any statement about a real in a c.c.c. extension that could become true in a further c.c.c. extension and remain true in all subsequent c.c.c. extensions, is already tr...
متن کاملThe Necessary Maximality Principle for c . c . c . forcing is equiconsistent with a weakly compact cardinal Joel
The Necessary Maximality Principle for c.c.c. forcing with real parameters is equiconsistent with the existence of a weakly compact cardinal. The Necessary Maximality Principle for c.c.c. forcing, denoted 2mpccc(R), asserts that any statement about a real in a c.c.c. extension that could become true in a further c.c.c. extension and remain true in all subsequent c.c.c. extensions, is already tr...
متن کاملOn the Maximal Extensions of Monotone Operators and Criteria for Maximality
Within a nonzero, real Banach space we study the problem of characterising a maximal extension of a monotone operator in terms of minimality properties of representative functions that are bounded by the Penot and Fitzpatrick functions. We single out a property of this space of representative functions that enable a very compact treatment of maximality and pre-maximality issues. This Paper is D...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005